Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Grasslands cover approximately a third of the Earth’s land surface and account for about a third of terrestrial carbon storage. Yet, we lack strong predictive models of grassland plant biomass, the primary source of carbon in grasslands. This lack of predictive ability may arise from the assumption of linear relationships between plant biomass and the environment and an underestimation of interactions of environmental variables. Using data from 116 grasslands on six continents, we show unimodal relationships between plant biomass and ecosystem characteristics, such as mean annual precipitation and soil nitrogen. Further, we found that soil nitrogen and plant diversity interacted in their relationships with plant biomass, such that plant diversity and biomass were positively related at low levels of nitrogen and negatively at elevated levels of nitrogen. Our results show that it is critical to account for the interactive and unimodal relationships between plant biomass and several environmental variables to accurately include plant biomass in global vegetation and carbon models.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Abstract Active restoration often aims to accelerate ecosystem recovery. However, active restoration may not be worthwhile if its effects are overwhelmed by changes that occur passively. Moreover, it can be challenging to separate the effects of passive processes, such as dispersal and natural succession, from active restoration efforts.We assess the 24‐year impact of actively restoring a Minnesota old‐field grassland via seed addition of native tallgrass prairie species. We compared the abundance of four functional plant groups in actively restored plots against abundances in three reference classes: (1) unrestored plots undergoing passive recovery within the same old field, (2) passively recovering plots in two nearby old fields of similar age and (3) a chronosequence of 21 old fields within the same landscape.Active restoration led to a higher abundance of native grasses and forbs in the 36 m2treatment plots. Seed addition was more effective if the original vegetation was first removed using herbicide, burning and tilling. However, long‐term conclusions about the efficacy of active restoration varied widely depending on the choice of reference class.In our small‐scale restoration experiment, native abundance was similarly high in both the actively restored and reference plots after 24 years, suggesting either (1) passive recovery or (2) local dispersal of native species from nearby treatment plots (i.e. cross‐contamination). In contrast, a comparison with two nearby reference fields suggested active restoration resulted in much higher native abundance relative to passive recovery. A smaller, positive effect was detected when we compared actively restored plots to the chronosequence of old fields. In the chronosequence, many passively recovering old fields had transitioned to native grass dominance naturally, although active restoration appeared to increase native forb abundance.Synthesis and applications: Our findings highlight the importance of using scale‐appropriate references for assessing the efficacy and need for active restoration. Comparing actively restored plots with the surrounding landscape, we found that active restoration and passive recovery led to similar plant communities after 24 years. Because local dispersal from actively restored sites can nearby references, caution should be exercised when evaluating long‐term restoration projects using only small‐scale experiments.more » « less
-
Free, publicly-accessible full text available June 1, 2026
-
Ecosystems are experiencing changing global patterns of mean annual precipitation (MAP) and enrichment with multiple nutrients that potentially colimit plant biomass production. In grasslands, mean aboveground plant biomass is closely related to MAP, but how this relationship changes after enrichment with multiple nutrients remains unclear. We hypothesized the global biomass–MAP relationship becomes steeper with an increasing number of added nutrients, with increases in steepness corresponding to the form of interaction among added nutrients and with increased mediation by changes in plant community diversity. We measured aboveground plant biomass production and species diversity in 71 grasslands on six continents representing the global span of grassland MAP, diversity, management, and soils. We fertilized all sites with nitrogen, phosphorus, and potassium with micronutrients in all combinations to identify which nutrients limited biomass at each site. As hypothesized, fertilizing with one, two, or three nutrients progressively steepened the global biomass–MAP relationship. The magnitude of the increase in steepness corresponded to whether sites were not limited by nitrogen or phosphorus, were limited by either one, or were colimited by both in additive, or synergistic forms. Unexpectedly, we found only weak evidence for mediation of biomass–MAP relationships by plant community diversity because relationships of species richness, evenness, and beta diversity to MAP and to biomass were weak or opposing. Site-level properties including baseline biomass production, soils, and management explained little variation in biomass–MAP relationships. These findings reveal multiple nutrient colimitation as a defining feature of the global grassland biomass–MAP relationship.more » « lessFree, publicly-accessible full text available April 15, 2026
-
Abstract Eutrophication usually impacts grassland biodiversity, community composition, and biomass production, but its impact on the stability of these community aspects is unclear. One challenge is that stability has many facets that can be tightly correlated (low dimensionality) or highly disparate (high dimensionality). Using standardized experiments in 55 grassland sites from a globally distributed experiment (NutNet), we quantify the effects of nutrient addition on five facets of stability (temporal invariability, resistance during dry and wet growing seasons, recovery after dry and wet growing seasons), measured on three community aspects (aboveground biomass, community composition, and species richness). Nutrient addition reduces the temporal invariability and resistance of species richness and community composition during dry and wet growing seasons, but does not affect those of biomass. Different stability measures are largely uncorrelated under both ambient and eutrophic conditions, indicating consistently high dimensionality. Harnessing the dimensionality of ecological stability provides insights for predicting grassland responses to global environmental change.more » « less
-
Abstract Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions.more » « less
-
Abstract Little is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates.more » « less
An official website of the United States government
